Code: CS4T1

II B.Tech - II Semester - Regular Examinations - JUNE 2014

THEORY OF COMPUTATION (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1. a) Define NFA and DFA, write significant differences between them.

 7 M
 - b) Construct NFA that accepts all the strings over alphabet {0, 1} where each string has 0 as the 5th symbol from right hand side.
- 2. a) Construct ϵ -free NFA for the following ϵ -NFA 7 M

b) Convert the following Mealy M/c represented by the table into equivalent Moore M/c.

7 M

Transition > Present State	0		1	
	Next State	O/P	Next State	O/P
→ q0	q2	0	q1	1
q1	q0	0	q2	0
q 2	q0	1	q3	1

3. a) Convert the following regular expression into finite automata

$$(a+b)*(ab+ba)(b+a)*$$

6 M

b) Discuss closure properties of regular sets.

8 M

4. a) Explain different types of grammars.

7 M

b) Construct Left-Linear and Right-Linear grammars for the regular expression.
 7 M

- 5. a) What is left recursion? Give an example for left recursive grammar.

 6 M
 - b) Using pumping lemma for context free languages prove that $L = \{a^n b^n c^n | n \ge 0\}$ is not context free language. 8 M
- 6. a) Define PDA. Write formal definitions for Acceptance by empty state, Acceptance by final state.

 7 M
 - b) Design a PDA that accepts language generated by the following CFG

 $S \rightarrow aSa \mid bSb \mid a \mid b$

7 M

7. a) What are recursive and recursively enumerable languages? Write the difference between them.

b) Construct a Turing Machine for the language $L = \{0^n 1^n 2^m \mid n, m \ge 1\}.$	8 M
8. a) What is Halting problem of a Turing Machine? Is it Decidable?	7 M
b) Define NP- complete and NP-hard problems.	7 M

•

•